
Algorithm Design and Complexity – Exam

TIME: 80 minutes

POINTS: 40 points

A. Theory (20p)

(4p) A1. Starting from their definitions, prove that the set A = O(f) ∩ Ω(f) is not empty. How can you

best describe the functions in A ?

(4p) A2. For solving the activity selection problem, we can use either dynamic programming or

greedy. Point out the recursive solution that describes the problem and how to transform the dynamic

programming approach into a greedy one.

(4p) A3. Are there any similarities between BFS and Dijkstra’s algorithm? What are the differences?

(4p) A4. A depth-first search of a directed graph can be used to classify its edges. Explain how and

what types of edges do we have. Give a simple example.

(4p) A5. Which is the generic algorithm for computing the minimum spanning tree (MST) of a graph?

Which are the differences between Kruskal’s and Prim’s algorithm for computing the MST.

B. Exercices (12p)

(6p) B1. Solve the following recurrences (choose two from below):

a. T(n) = 4 * T(n/2) + n * n

b. T(n) = T(n/2) + T(n/4) + n2

c. T(n) = T(n/2 + sqrt(n)) + n (Hint! Try to guess a solution by solving a similar but simpler

recurrence and prove it using the substitution method)

(6p) B2. Considering the graph on the left, show how the

following algorithms operate (choose two from below):

a. Ignoring the weights, run a BFS from node 1;

b. Compute the matrices D(0), D(1) and D(2) used

by the Floyd-Warshall algorithm;

c. Considering the graph undirected (remove the

orientation of the edges), compute a MST with

Kruskal

C. Problem (8p)

(8p) C1. A city has n key objectives and you know all the roads and distances between them. The city

municipality wants to build a single emergency point with the condition that it must be the most

central of the objectives (the distance to any other objective must be minimum). The number of roads

is of the same order as the number of objectives.

Write your idea for solving the problem, the pseudocode, the complexity and the correctness of your

solution! Try to find the optimal solution!

1 2

4

6

3

7

5

4

3

3

3

2 3

4

3

2
2

1

