I shall not provide you with the complete answers, just with hints:
A1. You have to compute which is the sum between any function $g(n)<=c * f(n)$ and any function $\mathrm{c} 1 * \mathrm{f}(\mathrm{n})<=\mathrm{h}(\mathrm{n})<=\mathrm{c} 2 * \mathrm{f}(\mathrm{n})$. By summing up, you obtain:
$(\mathrm{c}+\mathrm{c} 1) * \mathrm{f}(\mathrm{n})=<\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})<=\mathrm{c} 2 * \mathrm{f}(\mathrm{n})$
This means that you have found two new constants $\mathrm{c} 3=\mathrm{c}+\mathrm{c} 1$ and $\mathrm{c} 4=\mathrm{c} 2$ so the result should be theta(f(n))

A2. Backtracking is inefficient because it tests all possible partial solutions until it finds a contradiction with previous assignments. It must be used to solve NP-hard problems or when one wants to find all the possible solutions to a given problem. The 3 heuristics are listed in the slides.

A3. Because you need to be sure you choose these roots in the topological order of G_SCC, meaning the reverse topological order of transpose(G_SCC). Therefore, no edge will go from the first SCC to the next ones and so on... More information in the slides.

A4. There are 3 methods explained in the class: arrays, binary heaps and Fibonacci heaps. Each has a different complexity for removing an element and modifying an element in the priority queue, thus influencing the overall complexity of Prim's algorithm.

A5. There is a theorem for that, but it's not for this year's exam. Starting from the theorem you have to find a simple method/algorithm.

B1a. Use master theorem directly, case 3
B1b. Guess that the solution is $\mathrm{O}(\mathrm{n})$ and prove it using induction (or the substitution method)
B1c. Replace $\mathrm{n}=2^{\wedge} \mathrm{m}$ and see what happens. Solve the new recurrence in m .
B2a. You can have various DFS traversals. One is the following:
node d f
1116
4213
7312
8411
658
367
5910
21415

B2b.
$\mathrm{Q}=\{5\}$
$\mathrm{d}=[$ INF INF INF INF 0 INF INF INF] // nodes order is $1,2, \ldots, 8$
$\mathrm{Q}=\{1\}$
$\mathrm{d}=[2$ INF INF INF 0 INF INF INF] // nodes order is $1,2, \ldots, 8$
$\mathrm{Q}=\{2,4\}$
$\mathrm{d}=[27$ INF 50 INF INF INF] // nodes order is $1,2, \ldots, 8$
$\mathrm{Q}=\{2,7,8\}$
$\mathrm{d}=[27 \mathrm{INF} 50 \mathrm{INF} 67] / /$ nodes order is $1,2, \ldots, 8$
(you can continue until all nodes are computed)
B2c.
$\mathrm{D}(0)=$
03 INF 5 INF INF INF INF
INF 0 INF INF 23 INF INF
INF INF 0 INF INF 3 INF INF
INF INF INF 0 INF INF 21
2 INF INF INF 0 INF INF INF
INF INF 1 INF INF INF 0 INF
INF INF INF INF INF INF 01
INF INF INF INF 23 INF 0
D(1) =
03 INF 5 INF INF INF INF
INF 0 INF INF 23 INF INF
INF INF 0 INF INF 3 INF INF
INF INF INF 0 INF INF 21
27 INF 50 INF INF INF
INF INF 1 INF INF INF 0 INF
INF INF INF INF INF INF 01
INF INF INF INF 23 INF 0
(only elements $\mathrm{D}(1)[5][2]$ and $\mathrm{D}(1)[5][4]$ are changed from the previous matrix)
(you continue for $\mathrm{D}(2)$ and $\mathrm{D}(3)$)
C. There are several solutions, but the best one is to devise a dynamic programming solution by taking into consideration that at each step you need to choose between two directions (coming from up or coming from left). Therefore the recurrence is:

$$
\begin{aligned}
\operatorname{best}[\mathrm{i}][\mathrm{j}] & =\mathrm{A}[\mathrm{i}][\mathrm{j}]+\max (\operatorname{best}[\mathrm{i}-1][\mathrm{j}] \text {, best }[\mathrm{i}][\mathrm{j}-1]) \text { if } \mathrm{i}>1 \text { and } \mathrm{j}>1 \\
& A[\mathrm{i}][\mathrm{j}]+\operatorname{best}[\mathrm{i}][\mathrm{j}-1] \text { if } \mathrm{i}=1 \text { and } \mathrm{j}>1 \\
& A[\mathrm{i}][\mathrm{j}]+\operatorname{best}[\mathrm{i}-1][\mathrm{j}] \text { if } \mathrm{i}>1 \text { and } \mathrm{j}==1 \\
& A[\mathrm{i}][\mathrm{j}] \text { if } \mathrm{i}==1 \text { and } \mathrm{j}==1
\end{aligned}
$$

