Problem - Junior web designer

In the first day of internship at a web design company, your task is to transform partial images. The partial images have many blank areas bounded by different colors. Your job is to fill the areas bounded by a single color with that color. After processing the image you will have a picture with many color stains separated by blank areas.

The image is represented using a NxM matrix with positive integers. Number representations are: 0 for blank area and $1,2 \ldots . \mathrm{C}$ for colors.

*Input data

The input file image.in is structured as follows:
-on the first line an integer C representing the number of colors
-on the second line M and N separated by a blank space, representing the number of lines and columns respectively.
-the next M lines will each contain N numbers separated by a blank space, representing the image itself.

*Output data

The output file image.out should contain M lines, each with N numbers separated by a blank space, representing the transformed image.

```
*Restrictions
0<C<1000
1<N<=10000
1<M<=10000
```


*Example

image.in image.out
\qquad

	1	1
2	1	1
1		
0		

5		1									0	0	0	2	2	2	2	0	1	1
7	10	3				3	2	2	2	2	2	1	1							
0	0	0	2	0	0	2	0	1	0		3	3	3	0	2	2	2	0	1	1
3	3	3	2	0	0	0	2	1	0		3	3	3	4	4	4	0	0	1	1
0	0	3	0	2	2	2	0	1	0		3	3	0	4	4	4	4	0	0	0
0	0	3	4	4	4	0	0	1	1		3	0	4	4	4	4	4	0	0	5
0	3	0	4	0	0	4	0	0	0		0	0	0	4	4	4	0	0	5	5
3	0	4	0	0	0	4	0	0	5											
0	0	0	4	4	4	0	0	5	0											

The solutions should have a Readme file that should contain:

1. a short description of the algorithms you used,
2. the complexity of the algorithms (you must compute it).

Send the solutions in a .zip archive with the name HW_<number>_<name>_<group>.zip (e.g. HW_1_PopescuAndrei_1231E.zip) by email to: andavintila@gmail.com .
The deadline for receiving the homework is 19th of December, at 23:59.
Rules for assignments: http://adcfils.wordpress.com/assignements/

